2 resultados para type three secretion system

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – This paper aims to refer to a subjective approach to a type of complex system: human ecosystems, referred to as deontical impure systems (DIS) to capture a set of properties fundamental to the distinction between human and natural ecosystems. There are four main phenomenological components: directionality, intensity, connection energy and volume. The paper establishes thermodynamics of deontical systems based on the Law of Zipf and the temperature of information. Design/methodology/approach – Mathematical and logical development of human society structure. Findings – A fundamental question in this approach to DIS is the intensity or forces of a relation. Concepts are introduced as the system volume and propose a system thermodynamic theory. It hints at the possibility of adapting the fractal theory by introducing the fractal dimension of the system. Originality/value – This paper is a continuation of other previous papers and developing the theory of DIS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We provide a complete characterization of the astrophysical properties of the σ Ori Aa, Ab, B hierarchical triple system and an improved set of orbital parameters for the highly eccentric σ Ori Aa, Ab spectroscopic binary. We compiled a spectroscopic data set comprising 90 high-resolution spectra covering a total time span of 1963 days. We applied the Lehman-Filhés method for a detailed orbital analysis of the radial velocity curves and performed a combined quantitative spectroscopic analysis of the σ Ori Aa, Ab, B system by means of the stellar atmosphere code FASTWIND. We used our own plus other available information on photometry and distance to the system for measuring the radii, luminosities, and spectroscopic masses of the three components. We also inferred evolutionary masses and stellar ages using the Bayesian code BONNSAI. The orbital analysis of the new radial velocity curves led to a very accurate orbital solution of the σ Ori Aa, Ab pair. We provided indirect arguments indicating that σ Ori B is a fast-rotating early B dwarf. The FASTWIND+BONNSAI analysis showed that the Aa, Ab pair contains the hottest and most massive components of the triple system while σ Ori B is a bit cooler and less massive. The derived stellar ages of the inner pair are intriguingly younger than the one widely accepted for the σ Orionis cluster, at 3 ± 1 Ma. The outcome of this study will be of key importance for a precise determination of the distance to the σ Orionis cluster, the interpretation of the strong X-ray emission detected for σ Ori Aa, Ab, B, and the investigation of the formation and evolution of multiple massive stellar systems and substellar objects.